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Tracking Mobile Users in Wireless Networks
via Semi-Supervised Co-Localization

Jeffrey Junfeng Pan, Sinno Jialin Pan, Jie Yin, Lionel M. Ni Fellow, IEEE and Qiang Yang Fellow, IEEE

Abstract—Recent years have witnessed growing popularity of sensor and sensor-network technologies, supporting important practical
applications. One of the fundamental issues is how to accurately locate a user with few labelled data in a wireless sensor network,
where a major difficulty arises from the need to label large quantities of user location data, which in turn requires knowledge about the
locations of signal transmitters, or access points. To solve this problem, we have developed a novel machine-learning-based approach
that combines collaborative filtering with graph-based semi-supervised learning to learn both mobile-users’ locations and the locations
of access points. Our framework exploits both labelled and unlabelled data from mobile devices and access points. In our two-phase
solution, we first build a manifold-based model from a batch of labelled and unlabelled data in an offline training phase and then use a
weighted k-nearest-neighbor method to localize a mobile client in an online localization phase. We extend the two-phase co-localization
to an online and incremental model that can deal with labelled and unlabelled data that come sequentially and adapt to environmental
changes. Finally, we embed an action model to the framework such that additional kinds of sensor signals can be utilized to further
boost the performance of mobile tracking. Compared to other state-of-the-art systems, our framework has been shown to be more
accurate while requiring less calibration effort in our experiments performed at three different test-beds.

Index Terms—Wireless sensor networks, Semi-supervised learning, Indoor localization, Co-localization, AI applications.
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1 INTRODUCTION

Locating users in a wireless network is an important task

in many applications that range from context-aware com-

puting [1], location-based services [2], [3] to robotics [4],

[5]. With recent advances in pervasive computing and mobile

technology, the problem of tracking wireless devices using

received-signal-strength (RSS) has attracted intense interest in

many research communities [6], [7]. RSS-based tracking or

localization is a challenging task since radio signals usually

attenuate in a highly nonlinear and uncertain way in a complex

environment where client devices may be moving. Existing

approaches to RSS-based localization fall into two main

categories: (1) radio propagation models [8]; (2) statistical

machine learning models [9], [10], [11]

Traditionally, practitioners have used geometric models that

are based on signal propagation properties and access point

locations. These models have poor accuracy when the access

points (APs) are separated far from each other as in cellphone

base towers. More recent works have used learning-based

models that can achieve much better accuracy. These learning

based models are set up purely from the client devices based

on a large amount of calibration data [9], [10], [11].However,

a major problem with the learning-based models is that, in

many indoor localization cases, the calibrated training data are
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manually collected since the Global Positioning System (GPS)

may not work in an indoor environment. The data collection

process is time consuming, and can be easily outdated, making

it necessary for us to collect the data over and over again. In

order to reduce the calibration effort, this work attempts to

answer the following three questions:

• How can we reduce calibration effort to build a tracking

system by incorporating unlabelled data?

• Can we further enhance the performance if the locations

of some access points are known?

• Can we make use of different kinds of signals to further

boost the performance?

In this paper, we address the problem of simultaneously

recovering the locations of both mobile devices and access

points, which we call co-localization, using labelled and

unlabelled RSS data from both mobile devices and access

points. We propose two solutions to this problem. The first one

is called two-phase co-localization which is based on semi-

supervised manifold-learning techniques, which has an offline

training phase and an online localization phase. However, a

two-phase model may not adapt to environmental changes

well since the model remains unchanged after being trained.

To solve this problem, we extend the model to online co-
localization which can cope with calibrated and uncalibrated

data stream in real-time and adjust itself online.

• Solution I: Two-Phase Co-Localization
In general, learning-based systems using RSS values func-

tion in two phases : an offline training phase and an online
localization phase. In the offline phase, a learning-based
model is trained by using the signal strength values received

from the access points at selected locations in the area of

interest. These values comprise the training data gathered from
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a physical region, which are used to calibrate a probabilistic

location-estimation system. In the online localization phase,

the real-time signal strength samples received from the access

points are used to estimate the current location based on the

learned model.

More specifically, in the offline training phase, we take

two steps for model building. In the first step, we assume

that only unlabelled RSS data are given. We show that the

problem can be solved by Latent Semantic Indexing (LSI)

or Singular Value Decomposition (SVD) [12] techniques that

are popular in information retrieval. Consequently, the relative

locations of access points and mobile device trajectories can be

determined. In the second step, we assume that a small amount

of labelled RSS data from mobile devices and access points

are given. To recover the absolute locations of the devices

and access points, we apply a semi-supervised algorithm with

graph Laplacian and manifold learning [13], [14]. Finally, we

provide a unified framework for both the above unsupervised

and semi-supervised solutions. A preliminary version of this

solution can be found in [15].

• Solution II: Online Co-Localization
However, in many applications, access points can not be

deployed in a static environment where calibrated and un-

calibrated data arrive in a streaming manner. Access points

may be removed, relocated and added for better coverage and

link quality. In each case, a localization system may gradually

become inaccurate without costly re-calibration and re-running

the whole training process. It is also wasteful to discard

previous computational results even if the system can be re-

trained. A better idea is to construct an online localization

model in a streaming manner.

The online co-localization extends the two-phase framework

and addresses the problem of recovering the locations of

both mobile devices and access points from radio signals that

come in a streaming manner, by exploiting both labelled and

unlabelled data from mobile devices and access points. The

solution is based on online and incremental manifold-learning

techniques [16], [17] and semi-supervised techniques [14]

that can cope with labelled and unlabelled data that come

sequentially. A preliminary version of online co-localization
can be found in [18].

• Extension: Sensor Fusion with Action Models
Note that the above two solutions rely on measuring signal

strength values sent from static landmarks such as wireless

access points to mobile devices. Localization systems can

also be broadly classified into two categories: Landmark-based

and Landmark-free, depending on what sensor devices are

used. Landmark-based systems rely on a certain proximity

measurement between a mobile device and multiple landmarks

that are deployed in the environment [19], [20]. Typical

landmarks can be satellites in GPS or access points in WiFi

Networks. In an indoor environment, satellite signals are not

always available. Instead, WiFi access points are deployed in

many buildings. However, accurate tracking mobile devices

using RSS is a challenging task since RSS values have large

noise in a complex indoor environment due to attenuation,

shadowing and multi-path effects.

Landmark-free systems can perform self-localization with-

out relying on any external references [21]. For example, a

mobile robot can locate itself because an action sequence

is usually available. The robot can update its status after

executing an action such as move(forward, 1 meter) or

turn(left, 90o), which means the robot is “to move forward
1 meter” or “to turn left 90 degrees”, respectively. Similarly,

an Inertial Navigation System (INS) has motion sensors such

as gyroscope, accelerometer and compass, which can be used

for inferring the action of a mobile user such as speed and

orientation, walking or not, etc. Landmark-free systems can

be very accurate for a short time. However, errors may be

accumulated due to sensor noise if no landmarks are available

for re-calibration.

Hence, a better idea is to combine the Landmark-based

and Landmark-free systems. In this paper, we extend the

proposed co-localization solutions by utilizing both signal

strength received from landmarks and readings from motion

sensors. Specifically, we use the action sequences inferred

from compass and accelerometer, and reconstruct the location

trajectory via semi-supervised manifold learning techniques.

We borrow and extend the idea from [22] in the sense that

if actioni and actionj are similar, the change of status or

location would be similar. Our method is called Localization

via Action Respecting Manifold (LARM).

2 RELATED WORKS

In the past, propagation models were widely used for loca-

tion estimation due to their simplicity and efficiency [23].

These models usually assume that access points are labelled,

e.g., their locations are known. An alternative is to apply

machine learning methods to learn a model that captures

the correlations between RSS values and locations [7]. With

these methods the location information of access points need

not to be known. Instead, they usually rely on models that

are trained with RSS data collected on a mobile device

and the corresponding labels or physical locations [9], [24],

[11]The training data are usually collected offline. These signal

values may be noisy and nonlinear due to environmental

dynamics. Therefore, sufficient data have to be collected to

power algorithms for approximating the signal to location

mapping functions using histograms [24], k-nearest-neighbors

(KNN) [9], etc.

Besides semi-supervised learning models, transfer learning

techniques have been also applied to the RSS-based localiza-

tion problem to reduce the calibration effort [7]. The goal of

transfer learning is to learn a precise model in a target domain

with as few as training data by making use of training data

from a related domain, where the data distribution may be

different from that of the target domain [25].

However, these transfer-learning-based models only fo-

cused on tracking the mobile device, while our proposed co-

localization framework can recover the locations of access

points and track the mobile device simultaneously. By assum-

ing an action model be given, Ferris et al. [19] proposed an

unsupervised framework for SLAM (simultaneous localization

and mapping) [5] in a WiFi environment. It has been observed

in [22] that two identical actions lead to similar status change.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



3

By treating actions as discrete labels, latent coordinates can

be recovered via Action Respecting Embedding [22].

3 METHODOLOGY

3.1 Problem Statement
Consider a two-dimensional co-localization problem1. Assume

that a user holds a mobile device and navigates in an indoor

wireless environment C ⊆ R
2 with n access points, which can

periodically send out beacon signals. At some time ti, the RSS

values from all the n access points are measured by the mobile

device to form a row vector si = [si1 si2 . . . sin ] ∈ R
n. A

sequence of m signal strength vectors form an m× n matrix

S = [s′1 s′2 . . . s′m]′, where s′i denotes a transposition of

si. Here, the locations of some access points and the mobile

devices at some time ti are known or labelled, while the rest

are unlabelled.

We estimate the m × 2 location matrix P =
[p′

1,p
′
2, . . . ,p

′
m]′ where pi = [pi1 pi2 ] ∈ C is the location

of the mobile device at time ti and the n× 2 location matrix

Q = [q′
1,q

′
2, . . . ,q

′
n]

′ where qj = [qj1 qj2 ] ∈ C is the location

of the jth access point. We call this problem co-localization.

More specifically, we have two main objectives:

• Two-phase co-localization. Given a fixed amount of

labelled and unlabelled data collected offline, the first

objective is to build a model for simultaneously recov-

ering the locations of the remaining unknown access

points and the trajectory of the mobile device. The model

can then be used for online localization. The model

remains unchanged in the online phase unless we re-train

everything. These offline and online phases are done in a

way as most traditional machine learning approaches do.

• Online co-localization. Assuming that partially calibrated

data come sequentially, the second objective is to deter-

mine and update the locations of the remaining unlabelled

access points and the trajectory of the mobile device in

real-time. Note that m is not a constant value. As time

elapses, m may increase from 1, 2, . . ., to any number.

We wish to dynamically adjust the model when observing

new data without relying on an offline training phase.

Fig. 1. An indoor WLAN Test-bed.

Example 1 As an example, Figure 1 shows an indoor 802.11

wireless LAN environment of size about 60m× 50m, which

1. Note that it is straight-forward to extend our proposed models to three-
dimensional co-localization problems.

has n = 5 access points. A user with an IBM T42 notebook

that is equipped with an Intel Pro/2200BG internal wireless

card walks from A through B,C,D,A,E to F at time

tA, tB , tC , tD, tA′ , tE , tF . Correspondingly, a total number

of m = 1, 2, . . . , 7 signal strength vectors are incrementally

extracted. The final 7 × 5 matrix S is shown in Table 1. By

walking from A to F in the hallways, we collected 500 signal

strength vectors from 5 access points. Note that the blank cells

denote the missing values, which we can fill in a small default

value, e.g., −100dBm.

TABLE 1
Signal Strength (unit:dBm).
AP1 AP2 AP3 AP4 AP5

tA -40 -60 -40 -70
tB -50 -60 -80
tC -40 -70
tD -80 -40 -70
tA′ -40 -70 -40 -60
tE -40 -70 -40 -80
tF -80 -80 -50

(All values are rounded for illustration)

Our first task is to estimate the trajectory matrix P of the

mobile device at all times and to determine the location matrix

Q of the access points AP1, AP2, . . . , AP5. Our second task

is to dynamically update the trajectory matrix P of the mobile

device at each time when new data come and to update the

location matrix Q of the access points in an online manner.

3.2 Domain Characteristics
There are four main characteristics about RSS by observing

the data in Table 1:

1) Considering two rows of the data, the mobile device at

two different time may be spatially close if their pairwise

signal strengths are similar from most access points, e.g.,

the time tA and tA′ .

2) Considering two columns of the data, two access points

may be spatially close if their pairwise signal strength

values are similar most of the time, e.g., AP1 and AP4.

3) Considering a single cell sij of the data, the mobile

device and the j access point may be spatially close to

each other at time ti if the signal is strong, e.g., the

mobile device is close to AP3 at time tD.

4) Considering two neighbored rows of the data, the mobile

device at two consecutive time may be spatially close if

their time interval is small by assuming that a user may

not move too fast or too irregularly. For example, the

locations of the mobile device at time tA′ and tE are

close since |tA′ − tE | < ΔT .

3.3 SVD-based Relative Co-Localization
Given unlabelled data only, we can determine the relative

locations of the mobile device and the access points. Not

surprisingly, the relative co-localization is closely related to

Latent Semantic Indexing (LSI) [12]. In this view, we treat an

access point as a term and a mobile device at some time as a

document. The first three observed characteristics mentioned
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above would be mapped to the similarities of document-

document, term-term and document-term respectively. Esti-

mating the positions of the mobile device and the access points

corresponds to discovering the latent semantics of documents

and terms in some concept space.

More specifically, we can estimate the relative coordinates

by performing Singular Value Decomposition (SVD).

1) Transform the signal matrix S = [sij ]m×n to a non-

negative weight matrix S̃ = [s̃ij ]m×n by a linear func-

tion s̃ij = sij − smin, where smin is the minimal signal

strength detected, e.g., the noise level or −100dBm.

2) Normalize the weight matrix by S̃N = D
−1/2
1 S̃D

−1/2
2 .

Here, D1 and D2 are both diagonal matrices such that

D1 = diag(d11, d
1
2, . . . , d

1
m) where d1i =

∑n
j=1 s̃ij and

D2 = diag(d21, d
2
2, . . . , d

2
n) where d2j =

∑m
i=1 s̃ij .

3) Perform SVD on the normalized weight matrix by S̃N≈
Um×rΣr×rV

′
n×r. The columns of Um×r=[u1 . . .ur] and

Vn×r=[v1 . . .vr] are the left and right singular vectors.

The singular values of the diagonal matrix Σr×r =
diag(σ1, σ2, . . . , σr) are ranked in non-increasing order.

4) The (latent) location matrices of the mobile device P
and that of the access points Q can be estimated using

P = D
−1/2
1 [u2 u3] and Q = D

−1/2
2 [v2 v3]. Note that

we skip the first singular vectors u1 and v1 which mostly

capture some constant since matrix S̃N is not centering.

As an example, after performing SVD on data in Example
1, we obtained the latent coordinates of the mobile device

and the access points, which are shown in Figure 2(a). In this

example, it is easy to see that the hallway structure is not well

preserved by comparing the true location sequence shown in

Figure 1. This is because SVD assumes a linear subspace,

while the correlation of RSS values and distance to access

points is often nonlinear [11].

A better solution is using kernelized SVD [26], by trans-

forming signal strength values to weights by a nonlinear
function. More specifically, we transform the signal matrix

S = [sij ]m×n to a new weight matrix S̃ = [s̃ij ]m×n by a

Gaussian function:

s̃ij = exp(−|sij − smax|2/2σ2) (1)

where smax is the maximal signal strength detected, e.g., the

signal strength around an access point, and σ is a parameter

of the Gaussian kernel, which is known as kernel width.

Figure 2(b) plots the co-localization result using P and Q.

Intuitively, the reconstructed hallway structure and the loca-

tions of access points are better than that shown in Figure 2(a)

while referring to the ground truth illustrated in Figure 1.

3.4 Manifold-based Absolute Co-Localization

When the physical locations of some access points and the

mobile device at some time are known, we can ground the

unknown coordinates by exploiting the geometry of the signal

distribution. More specifically, we can use manifold-based

learning, which generally assumes that if two points are close

in the intrinsic geometry of the marginal distribution, their

conditional distributions are similar [27]. This implies that

mobile devices would be spatially close to each other if their

signal vectors are similar along some manifold structure [28].

For example, the mobile device at time tA and tE would

be spatially close to each other (Figure 1) since their signal

strength values are similar (Table 1).
A more concrete example is shown in Figure 3. As can

be seen in Figure 3(a), there is a two-dimensional triangle

localization area with three beacon nodes placed at the ver-

tices. The corresponding signal strength values form a two-

dimensional nonlinear signal manifold in a three-dimensional

space in Figure 3(b). Point A, B and C are neighbors in both

location and signal spaces.

Node 1

Node 2

Node 3

  Sink

A

B
C

(a) Triangle test-bed
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Fig. 3. Neighborhood preserving.

When the manifold assumption holds, the optimal solution

is given by f∗ = argminΣl
i=1|fi − yi|2 + γfTLf [14], where

the first term measures the fitting error and the second term

poses the smoothness along the manifold and L is the graph

Laplacian [29]. For our problem, the objective is to optimize:

P ∗ = argmin
P∈Rm×2

(P − YP )
′JP (P − YP ) + γPP

′LPP, (2)

where P is the coordinate matrix of the mobile device to be

determined; JP = diag(δ1, δ2, . . . , δm) is an indication matrix

where δi = 1 if the coordinate of the mobile device at time

ti is given and otherwise δi = 0; YP = [y′
1,y

′
2, . . . ,y

′
m]′ is

an m × 2 matrix supplying the calibration data where yi is

the given coordinate of the mobile device at time ti if δi = 1
and otherwise the value of yi can be any, e.g., yi = [0 0]; γP
controls the smoothness of the coordinates along the manifold;

LP = DP −WP is the graph Laplacian; WP = [wij ]m×m is

the weight matrix and wij = exp(−‖si − sj‖2/2σ2) if si and

sj are neighbors along the manifold and otherwise wij = 0;

DP = diag(d1, d2, . . . , dm) and di =
∑m

j=1 wij .
By setting the derivative of the right hand side in (2) to

zero, we obtain the optimal solution shown as follows,

P ∗ = (JP + γPLP )
−1JPYP . (3)

Similarly, the coordinates of the access points can be

obtained by solving the following optimization problem Q∗=
argmin
Q∈Rn×2

(Q−YQ)
′JQ(Q−YQ)+γQQ

′LQQ, and thus

Q∗ = (JQ + γQLQ)
−1JQYQ, (4)

where LQ = DQ − WQ is the graph Laplacian, WQ is the

weight matrix and DQ is constructed from WQ.
Thus, when the locations of the mobile device and the

access points are partially known, we can co-localize them

by solving Equations (3) and (4) respectively. Alternatively,

we can combine them into a single equation as

R∗ = (J + γBLB + γCLC)
−1JY, (5)
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Fig. 2. 802.11 Wireless LAN test in an indoor environment.

where R = [P ′ Q′]′ is the coordinate matrix of the mobile

device and the access points; Y = [Y ′
P Y ′

Q]
′ gives the

label information; J =
[

JP 0
0 JQ

]
is the indication matrix;

LB=
[

LP 0
0 0

]
and LC=

[
0 0
0 LQ

]
are the graph Laplacians.

In practice, the graph Laplacians LB and LC in Equation (5)

are normalized [13], [30]. Figure 2(c) shows an example

of the manifold-based co-localization when the locations of

the mobile device at time tA, tB , tC , tD, tE , tF and the

access points AP2, AP3, AP4 are known. As can be seen,

the trajectory of the mobile device is well grounded when

compared to the ground truth shown in Figure 1. However,

locations of access points are estimated badly, e.g., the location

of AP5. The reason is that in manifold-based co-localization,

there are two manifolds, one is for WiFi data and the other is

for access points. These two manifolds are learned separately.

Most manifold-based methods require dense unlabelled data

to propagate label information through an underlying manifold

structure. However, from access points’ perspective, the data

are extremely sparse. Furthermore, AP5 is far away from the

other four. In this case, the manifold-based co-localization

approach is not able to estimate the location of AP5 accurately.

In contrast, the SVD-based co-localization approach employs

matrix factorization techniques to recover latent locations of

the access points and WiFi data jointly. As a result, a lot

of unlabeled WiFi data can help recover latent locations of

the access points. Although the latent coordinates can not be

aligned to absolute locations without label information, the

relative distance between access points is more accurate than

that estimated by the manifold-based co-localization approach.

In the following, we propose to combine SVD-based and

manifold-based co-localization to align the mobile device and

the access points to the ground truth jointly.

3.5 Solution I: Two-Phase Co-Localization

Offline Training Phase So far, we have formulated the

unsupervised co-localization based on SVD and the semi-

supervised co-localization based on the manifold assumption

using Equation (5) by exploiting the correlation between the

mobile device and the access points. In this section, we

integrate them through a unifying framework. Essentially,

performing SVD on SN is equivalent to solving the following

generalized eigenvalue problem [31]

LAZ = DAZΛ, (6)

where LA = DA −WA is the graph Laplacian, WA=
[

0 S̃

S̃′ 0

]
and DA=

[
D1 0
0 D2

]
. The eigenvalues of the diagonal matrix

Λ = diag(λ1, λ2, . . . , λm+n) are ranked in non-decreasing
order. Z = [z1, z2, . . . zm+n] are the eigenvectors. [P ′ Q′]′ =
[z2 z3]. Note that we skip the first eigenvector z1 since the

solution is trivial. Furthermore, it is interesting to see that we

have λi = 1−σi where i = 1, 2, . . . , r [31]. Detailed analysis

and comparison of LSI, SVD and graph Laplacian can be

found in literatures on LSI [12], Bipartite Co-Clustering [31]

and Fiedler Embeddings [32].

Putting (5) and (6) together, we aim to optimize:

R∗ = argmin
R∈R(m+n)×2

(R− Y )′J(R− Y ) + γR′LR. (7)

The first term measures the fitting error and the second term

constrains the smoothness among the mobile device and the

access points. The solution is given by:

R∗ = (J + γL)−1JY, (8)

where L = γALA + γBLB + γCLC = D −W .

We set γ to a small positive value, which is directly

related to harmonic functions on the graph such that the

coordinate of a mobile device or an access point ri in

R = [r′1, r
′
2, . . . , r

′
m+n]

′ is determined by the average of its

neighbors: ri =
∑

j wijrj∑
j wij

, where W = [wij ](m+n)×(m+n) =[
γBWP γAS̃

γAS̃
′ γCWQ

]
.

In practice, we optimize the objective function over the

normalized graph Laplacian [13], [30] to balance the weights

of vertices by substituting R=D−1/2F into (7)

F ∗=argmin
F∈R(m+n)×2

(D−1/2F−Y)′J(D−1/2F−Y)+γNF ′LNF, (9)

where LN = D−1/2LD−1/2 is the normalized graph Lapla-

cian. The optimal F is given by

F ∗ = (JD−1/2 + γNLN )−1JY. (10)

Substituting F = D1/2R back to Equation (10), the locations

of the mobile device and the access points are given by

R∗ = D−1/2(JD−1/2 + γNLN )−1JY. (11)

We can export the estimated coordinates of the mobile

device trajectory P ∗ and the access point locations Q∗ from

R∗ = [P ∗′ Q∗′]′.
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Online Localization Phase The location of a new signal

strength vector si is predicted as follows:

1) Find the k neighbors closest to si in the training data

S = [s′1 s′2 . . . s′m]′. Let Ci be the index set of

the k nearest neighbors. Besides, we link si to those

access points from which we can detect the radio signal.

We also link si to si−1 in order to pose the temporal

constraint by assuming that a user may not move too

fast (ti − ti−1 < ΔT ). Denote the index set for these

additional links as Bi.

2) Approximately, we can predict the location using har-

monic functions [33], which are smooth functions on

the graph such that ri is determined by the weighted

average of its neighbors. This property holds if there

is no uncertainty in the labelled locations of matrix P
during training (γ → 0 in (7)),

r̃i ≈
∑

j∈Ci∪Bi
wijrj∑

j∈Ci∪Bi
wij

. (12)

Note that the above r̃i is an approximation because

adding si to the existing neighborhood graph from the

training data may slightly change the graph structure. We

link the ith node to the node set Ci but do not eliminate

any existing edge in the graph to maintain the k-neighbor

relationship among all nodes.

3.6 Solution II: Online Co-Localization

We will extend the above Two-Phase Co-Localization model

to an online version. We wish that it can dynamically adjust

itself when new data come sequentially in real-time. The key

point is how to add the new data into the learned graph by

updating the k-neighbor relationship and the corresponding

weight matrix W . This can be done repeatedly in two online

steps: Predict and Update.

Predict Given a new signal vector si at time ti, we find its k
nearest neighbors and use Equation (12) in the above online
localization phase for predicting the location r̃i.
Update The addition and deletion of nodes can modify the

neighborhood graph and the corresponding graph Laplacian.

We use the method described in [16] for updating the neigh-

borhood graph structure locally.

• Node Addition Let A+
i and D+

i be the set of edges to

be added and deleted after inserting vi to the neighborhood

graph, respectively. Let τj be the index of the kth nearest

neighbor of vj . Here we assume that all k nearest neighbors

of vj have been ranked in non-decreasing order in terms of

the distance to vj . Given a k-nearest-neighborhood graph

consisting of n nodes, when the (n+1)
th

node vi is inserted

to the graph, we need to add k edges to connect vi to its

k nearest neighbors, e(vi, vj), where vj ∈ Ci. Furthermore,

for each vj in the old graph, if Δj,τj ≤ Δj,i, where Δj,i

denotes the distance between vi and vj , then the k nearest

neighborhood of vj remains the same, thus the corresponding

local neighborhood graph of vj does not need to be updated.

Otherwise, if Δj,τj >Δj,i, then vi replaces vτj in the k nearest

neighborhood of vj . Thus the corresponding neighborhood

graph needs to be updated as follows:

A+
i = {e(j, i) : j ∈ Ci or Δj,τj > Δj,i},

D+
i = {e(j, τj) : Δj,τj > Δj,i & Δτj ,j > Δτj ,lj},

where lj is the index of the kth nearest neighbor of

vτj after inserting vi in the graph.

• Node Deletion Similarly, let A−
i and D−

i denote the set

of edges to be added and deleted after removing vi from the

neighborhood graph, respectively. The graph update can be

done as follows:

A−
i = {e(i, hi)}, where hi is the (k + 1)th nearest

neighbor before removing vi in the graph.

D−
i = {e(i, j) : j ∈ Ci}.

After updating the neighborhood graph, it is straight-

forward to modify the corresponding weight matrix W . For

an added edge e(i, j), we set both the values of wij and wji

because the neighborhood graph is symmetric. If it is a deleted

edge, we clear the values of wij and wji. The graph Laplacian

L=D−W can be updated in a similar way.

Finally, we have to re-estimate the location matrix R =
[P ′ Q′]′ of the mobile devices and the access points so that it

can reflect the change of the neighborhood graph and the new

graph Laplacian L. Instead of using Equation (8) for solving

R, we update R by iteration. In each iteration cycle, we apply

rnewi =
∑

j∈Ci∪Bi
wijr

old
j∑

j∈Ci∪Bi
wij

, i=1, . . . ,m+n. We use the predicted

r̃i as the initial values for iteration. Furthermore, the weight

matrix W does vary too much after addition or deletion. We

can thus obtain very good estimation after a few iterations.

Example 2 A user with a mobile device walks in the office

area shown in Figure 1. The mobile device periodically

collects signal vectors. The user can mark down his location

when he walks by some landmark points such as corners and

dead-ends of the hallways (A,B, . . . , F ). Thus, the data that

come in a streaming manner are partially labelled. By applying

the online co-localization method, we continuously update

the recovered locations of the mobile devices and the access

points. Figure 4 shows the online co-localizaiton results at

six key frames when the user walks by A,B, . . . , F . As can

be seen, the locations of the user trajectory and the access

points are dynamically calibrated when obtaining new data.

For example, AP3 gradually converges to its true location.

3.7 Special Cases of Co-Localization

Co-localization is a general framework for RSS-based tracking

and mapping. It addresses the problem of simultaneously

recovering the locations of both mobile devices and access

points by exploiting both labelled and unlabelled data from

mobile devices and access points. The model can be applied

with or without an offline training phase. It is flexible since

we can calibrate the system in many different ways, depending

on what information we have at hand. For example, if a

wireless provider is unable to provide us with some access

point locations, we can still set up an accurate tracking system

by collecting data ourselves. If the access point locations are

partially known, we can use them and further enhance the
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performance. Some special cases of our model are summarized

as follows:

• When only unlabelled RSS data collected by mobile

devices and no location information of access points are

available, we can do unsupervised dimension reduction

and recover the relative coordinates of both access points

and mobile devices as shown in Figure 2(b). It is related

to a Gaussian Process Latent Variable Model to recover

latent coordinates of user trajectories based on unlabelled

data [19].

• When labelled RSS data collected by mobile devices

and no location information of access points are avail-

able, the model acts similarly to a classical KNN-based

method [9], which is applied for indoor tracking using

WiFi signal strength values.

• When partially labelled RSS data collected mobile de-

vices and no location information of access points are

available, the model performs similarly to LeMan [28],

which is a semi-supervised algorithm for sensor-network-

based localization based on manifold learning. LeMan
calibrates a tracking system purely from the client site.

• In general, when RSS data collected mobile devices and

locations of access points are partially labelled, we can

use all the available data for model building and get a

better result than using part of the information only. We

have studied how the labelled and unlabelled data help

co-localization in [15], [18].

4 EXTENSION WITH ACTION MODELS
As we describe in Section 1, localization systems can be

classified into two categories: landmark-based and landmark-

free. Landmark-based systems rely on the measurement be-

tween a tracking target and multiple landmarks such as the

received signal strength between a WiFi client and multiple

access points. Landmark-free systems can localize themselves

without the need of external references. An Inertial Navigation

System can continuously update its position from measured

velocity and time. Sensor readings may be inaccurate and

noisy in either category of systems. WiFi signal has large

noise in a complex indoor environment due to shadowing and

multi-path effects. Inertial systems produce inaccurate dead

reckoning over long periods, but accurately estimate relative

motion over short intervals. In this section, we leverage the

use of multiple sensors and extend the localization framework

as learning Action Respecting Manifold (LARM for short).

4.1 Problem Re-Statement
Similar to the problem statement described in Section 3.1,

assume that a user holds a mobile device and navigates in a

two-dimensional indoor wireless environment C ⊆ R
2 with n

access points, which can periodically send out beacon signals.

At some time ti, the RSS values from all the n access

points are measured by the mobile device to form a row

vector si=[si1 si2 . . . sin]∈R
n. A sequence of m signal

strength vectors form an m×n matrix S=[s′1 s′2 . . . s′m]′.
Furthermore, the mobile device has additional sensors for

measuring the activity of the mobile user. Such sensors can

be compass or accelerometer, from which we can estimate

the moving direction and speed. Let the speed at time ti be

oi and the direction or azimuth be θi. In this paper, azimuth

is measured in angle in degree. It ranges in [0◦, 360◦) and

0◦ =North, 90◦ =East, 180◦ = South, 270◦ =West. We

denote O=[o1 o2 . . . om]′ and Θ=[θ1 θ2 . . . θm]′ column

vectors of the sequences of speed and azimuth, respectively.

The locations of the mobile device at some time t are

labelled, while the rest are unlabelled. Furthermore, loca-

tions of some access points are known, while the rest are

unknown. Our objective is to estimate the m× 2 location

matrix P = [p′
1,p

′
2, . . . ,p

′
m]′ and n × 2 location matrix

Q = [q′
1,q

′
2, . . . ,q

′
n]

′, where pi = [pi1 pi2 ] ∈ C and

qj = [qj1 qj2 ] ∈ C are the location of the mobile device at

ti and the location of the jth access point respectively.

Example 3 Again, Figure 1 shows an indoor WiFi environ-

ment with 5 access points deployed. A user holds a mobile

device and walks from A through B, . . . , E and finally stop at

F at time tA, tB , . . . , tF . Besides the signal strength vectors

collected in Table 1, we can get azimuth vectors from the

compass sensor e.g., Θ= [270◦ 180◦ 90◦ 0◦ 180◦ 90◦ 90◦]′,
and estimate the walking speed from the accelerometer sensor.

Assume the user walk at a constant speed (1m/s) and stops

at F , the speed vector is estimated as O = [1 1 1 1 1 1 0]′.
Our task is to estimate the trajectory matrix P of the mobile

device and the location matrix Q of the access points.

4.2 Signal Characteristics
Besides all the domain characteristics described in subsec-

tion 3.2, there is one more important feature that explores

the connection between actions and location changes:

• Consider two actions inferred from the motion sensors.

If their actions are similar, the location change may also

be similar. For example in Figure 1, a user walks from A
through B,C,D,A,E to F at time tA, tB , tC , tD, tA′ ,

tE , tF . The actions of the mobile device are both

move(east) at time tC and tA′ , the change of their

locations ΔC and ΔA′ should be similar. Note that

the change of locations is a vector, having distance and

direction of changes (Fig 5).

Fig. 5. Similar actions (move east) result in similar change
of location (ΔC and ΔA′).

4.3 Dead Reckoning Localization
Let the initial position, speed and azimuth of the mobile device

be p1, o1 and θ1. We set up a coordinate system using p1 as

the origin, east as the positive x-axis and north as the positive

y-axis. The location can be updated with pi+1=pi+Δpi (i=
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Fig. 4. Illustration of the online co-localization when a user walks from A through B,C,D,E to F .

1, . . . ,m−1), where pi+1 and pi are the locations at time ti+1

and ti. Δpi is the displacement in the interval Δti=ti+1−ti.
More specifically,

Δpi = [Δpi1 Δpi2 ] =

[
oi ∗Δti ∗ sin(θi)
oi ∗Δti ∗ cos(θi)

]′
, (13)

where oi and θi can be inferred from accelerometer and

compass sensors, respectively.

Alternatively, we can reformulate it as an optimization prob-

lem. The objective is to minimize
∑m−1

i=1 ((pi+1−pi)−Δpi)
2.

Again, we can rewrite it as a matrix form,

P ∗ = argmin
P∈Rm×2

(GPP −ΔP )′JΔP (GPP −ΔP ), (14)

where GP = (gij)m×m. If 1 ≤ i ≤ m − 1 & i = j, then

gij =1, else if 1≤ i≤m− 1 & i= j−1, gij =−1, otherwise

gij = 0. P is the coordinate matrix of the mobile device to

be determined, and JΔP = diag(δ1, δ2, . . . , δm−1, 0) is an

indication matrix where δi = 1 if the action information of

the mobile user at time ti is available and otherwise δi = 0,

and ΔP = [Δp′
1 Δp′

2 . . . Δp′
m−1 0′]′ is an m × 2 matrix

supplying the calibration data where Δpi is the change of

location from time ti to ti+1 if δi = 1 and otherwise the

value of Δpi can be any. By setting the derivative of the right

hand side in the optimization problem (14) to zero, we can

get a close form solution P = (G′
PJΔPGP )

−1G′
PJΔPΔP .

Note that matrix GP is singular, and thus matrix inverse

is not applicable. One may consider using pseudo-inverses.

Alternatively, we can pose a regularization term P ′P to

the objective function as many machine learning methods

do. Meanwhile, we borrow the idea from Action Respecting

Embedding [22] and add another term P ′G′
PLΔPGPP to

measure the smoothness of actions. Then we get a new

optimization problem as:

P ∗=argmin
P∈Rm×2

α(GPP−ΔP )′JΔP (GPP−ΔP )

+βP ′G′
PLΔPGPP + εP ′P, (15)

where α, β and ε are parameters to balance the loss function

term, the smoothness of actions and the “complexity” of P ,

respectively. LΔP is the Graph Laplacian for describing the

similarity of action pairs. Again, the similarity is described

with Gaussian Kernel: wij = exp(−‖Δpi −Δpj‖2/2σ2
ΔP ).

By setting the derivative of the right hand side in (15) to zero,

we can get a close form solution
Example 4 Figure 6(a) shows that a user holds a mobile device

and walks in an area of 70m × 80m from point 1, 2, . . ., to

5. The device can measure the WiFi signal strength from the

surrounding access points periodically. Meanwhile, the mobile

device has digital compass and accelerometer sensors mounted

so that we can estimate a sequence of azimuth θi and speed

oi, which will be converted to Δpi using Equation (13). The

localization result is obtained by solving (15). Figure 6(b)

illustrates the localization trajectory. Compared to the ground

truth trajectory shown in Figure 6(a), the estimated locations

are accurate at an initial stage, say from point 1 to 2. It

gradually becomes inaccurate because the error is accumulated

as time elapses. Note that, we use an uncalibrated compass

for collecting data. Therefore, the azimuth reading may not

be accurate. However, a calibrated compass may be disturbed

and become inaccurate if it is close to some local magnetic

fields such as elevators.

4.4 Extension: The LARM Algorithm
By combing the dead reckoning objective (15) and the

manifold-based objective (2) together, we optimize:

P ∗=argmin
P∈Rm×2

(P−YP)
′JP (P−YP)+βP

′G′
PLΔPGPP+εP

′P

+γPP
′LPP+α(GPP−ΔP )′JΔP (GPP−ΔP ).

The first term is the fitting error to labelled data. The second

term describes the smoothness on the action manifold. The

third term poses a penalty on the complexity of the solution.

The fourth term is the smoothness on the signal manifold. The

fifth term is the agreement of location changes.
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Fig. 6. Localization comparison with motion sensors.

Example 5 By combining all sensor readings together, we

can recover a better location map for either unsupervised

or semi-supervised cases. Figure 6(c) shows the localization

result without any labelled location. If we compare Figure 6(c)

to Figure 6(b), we can see that unsupervised LARM can

greatly correct the drifting error of Dead Reckoning by using

additional unlabelled WiFi signal data. Additionally, if we have

5 percent of random labelled locations, the recovered trajectory

as shown in Figure 6(d) will be pretty close to the ground truth.

Note that a motion or action model is unavailable for access

points. Thus, we can combine (15) with (7) or (9) and form

the objective of action-guided co-localization. The essential

idea is to incorporate possible constraints about the similarity

among signals and locations of mobile devices and access

points, location changes and actions, etc. The new optimization

problem of action guided co-localization can be written as

follows,

R∗= argmin
R∈R(m+n)×2

(R−Y)′J(R−Y)+γR′LR+βR′G′LΔRGR

+α(GR−ΔR)′JΔR(GR−ΔR)+εR′R,

where R = [P ′ Q′]′ is the coordinate matrix of the mobile

device and the access points; Y = [Y ′
P Y ′

Q]
′ gives the label

information; J=
[

JP 0
0 JQ

]
is the indication matrix. L=γALA+

γBLB+γCLC , which is the same as defined in Section 3.5.

G=[G′
P 0′]′, LΔR=[L′

ΔP 0′]′, ΔR=[ΔP ′ 0′]′ and JΔR=
[J ′

ΔP 0′]′. Similarly, a close form solution of the optimization

problem can be obtained by

R = (J + γL+ αG′JΔRG+ βG′LΔRG+ εI)−1

×(JY + αG′JΔRΔR). (16)

Note that the above solution still works even if all locations

are unlabelled and actions are partially labelled.

4.5 Action Recognition

In previous sections, we assume the walking speed and di-

rection can be estimated from accelerometer and compass

sensors. While it is straight-forward to obtain direction read-

ings Θ = [θ1, θ2, . . . , θm]′ from compass sensors, we have

not yet described any detail on how to estimate the speed

O = [o1, o2, . . . , om]′. Whether a user is running, walking

or standing still can be inferred from accelerometer sensors.

When we recognize that the user is running or walking, the

speed can be estimated via step counting, assuming the step

size is known and fixed.

To recognize the user actions, we transform the sequential

accelerometer data into a fixed dimension of features. More

specifically, we apply a sliding window on the signals and

extract the mean value, standard deviation, Cepstrum (a feature

widely used in speech recognition) on each dimension of

readings and Pearson correlation between pairs of dimensions.

More features and models can be found at many previous

works [34]. We collect a set of data and train a Support Vector

Machine with Linear Kernel for action recognition. Table 2

shows the experimental results for six different actions from

a different set of accelerometer data. The overall accuracy is

88.55%. Note that the action “turn left” or “turn right” may be

ambiguous while the action “static” is easy to be recognized.

In practice, we do not need to recognize the actions on

“turning” since compass sensor has richer information.

We further count the steps once we recognize that the user is

walking or climbing upstairs/downstairs. To properly segment

steps, we implement some cycle detection algorithm. We apply

Fast Fourier Transformation (FFT) to detect whether there

is a cycle in frequency domain. FFT is an efficient method

for transforming signals from time domain to frequency

domain[35]. By applying FFT, we can detect a strong cycle

signal in the frequency domain based on periodic patterns.

Assume that the user has a fixed step size, we can estimate

the walking speed reasonably well.

TABLE 2
Action recognition using accelerometer sensor only
estimation
/ truth

static upstairs downstairs walk left turn right turn

static 994 0 0 1 7 6
upstairs 0 959 102 115 42 5
downstairs 0 36 967 56 34 9
walk 0 1 0 4457 112 131
left turn 0 50 1 117 948 15
right turn 0 0 5 248 24 314

5 EXPERIMENTAL SETUP

In this section, we first evaluate the performance of the co-
localization algorithms on three sets of different devices and

test-beds. They are wireless local area networks (WLAN),

wireless sensor networks (WSN) and radio frequency identifi-

cation networks (RFID). In the past, researchers have tried to

formalize various metrics for evaluating activity recognition

and location based services [36]. A summary of our three

experimental setups is shown in Table 3.
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TABLE 3
The experimental setups of WLAN, WSN and RFID

AP MD test-bed scale motion pattern

WLAN 25 APs 1 notebook hallway 60× 50m2 mobile (human)

WSN 8 nodes 1 mobile node room 5× 4m2 mobile (robot)

RFID 4 readers 30 RFID tags room 5× 4m2 static

A person carrying an IBM c© T42 notebook, which is

equipped an Intel c© Pro/2200GB internal wireless card, walks

in an indoor environment of about 60m × 50m in size. An

IEEE 802.11b wireless network in the 2.4GHz frequency

bandwidth has been set up in the indoor environment. We

can detect more than 20 access points. The person walks in

the hallways and a total of 2000 examples (vectors of RSS

values) are collected with sample rate 2Hz. The ground-truth

location labels are obtained by referring to landmark points

such as doors, corners and dead-ends. The localization area is

composed by one-dimensional hallways.

The sensor-based tracking experiment is performed in the

Pervasive Computing Laboratory at the Hong Kong University

of Science and Technology. The room is set up an experimental

test-bed of 5.0 meter by 4.0 meter.

We use CrossBow MICA2 and MICA2Dot to construct a

wireless sensor network. We program these sensor nodes to

broadcast and detect beacon frames periodically so that they

can measure the RSS from each other. By combining the RSS

from different nodes we can estimate locations of these nodes.

We configure all the nodes such that each of them can measure

the RSS from the remaining eight nodes in every 0.5s. We try

different kinds of robots that could run freely around the floor

such as Sony AIBO dogs, LEGO Mindstorms and off-the-

shelf toy cars. A Camera Array is used to record experiments

for supporting location information (ground truth) of mobile

robots. Each camera monitors at least one-fourth part of the

test-bed. The central area is covered by all four cameras. We

use some landmarks to do camera calibrationsuch as static

sensor nodes which locations are known.

For the RFID experiment, we used four Mantis readers (AP)

and 30 tags (MD) from RF Code c©. They are all deployed as

stationary nodes. All the tags are deployed at 6×5 grid points

on the 5.0m× 4.0m floor. A total of 2,000 examples with

ground truth locations were collected.

6 EXPERIMENTAL RESULTS

6.1 Accuracy Test of Two-Phase Co-Localization

For comparison, we run the following baseline algorithms

(1) LANDMARC, a nearest-neighbor weighting based method

designed for RFID localization [37]; (2) Support Vector Re-

gression (SVR), a simplified variant of a kernel-based method

used for WSN localization [11]; (3) RADAR, a KNN method

for WLAN localization [9]. In each experiment, we randomly

picked 500 examples for training and the rest for testing. The

training data was further split into labelled and unlabelled

parts. The results shown in Figure 7 are averaged over 10

repetitions for reducing statistical variability. All results are

measured in relative error distances, which are error distances

in percentage while referring to the maximal error distance in

each figure for easy comparison.

LANDMARC, RADAR and SVR were trained with the

labelled part of training data. In contrast, the proposed two-
phase co-localization method uses both labelled and unla-

belled data. We test on two configurations for the two-phase
co-localization method: (1) “Co-Localization no AP” uses

partially labelled data from mobile devices for training, in

which we try to recover the locations of the access points; and

(2) “Co-Localization with AP” repeats the same experiments

with the locations of all access points known. Note that all

error distances are presented in percentage since they are

normalized when referring to the maximal error in each figure.

6.1.1 Model Parameter Setting
Our experiments mainly target at showing how labelled and

unlabelled data can help increase accuracy and reduce calibra-

tion effort in relative error distance. We do not specifically fine

tune the parameters. Instead, parameters are determined in a

validation set at a coarse level. We set smax = −30 dBm and

σ = 8 in the Gaussian function in Equation (1) for signals

in all networks. smax = −30 is a value that roughly ranks

top 1% of all signal strength values. We avoid using top 1st

value to avoid potential outlier. We also try other values in

the experiment such as smax = −40 and σ = 16. There is

no significant difference in the experiment results. We use

k nearest neighbors for building the neighborhood graph in

constructing all graph Laplacians. We set k = 10 for LP in

Equation (3) and k = 5 for LQ in Equation (4) after trying

popular values such as 5, 10 or 15 in manifold learning. γ
is a global regularization term for second level terms γA,

γB , γC in Equation (8). In the following experiments, we set

γA = 0.01, γB = 1.0, γC = 0.001 and γ = 0.0001, which are

tuned in a validation set. The details of a strategy of parameter

(γ’s) tuning and a sensitivity study on the parameters will be

described in Section 6.1.3.

6.1.2 Comparison Results
Figures 7(a), 7(c) and 7(e) show the location estimation errors

of different mobile devices by varying the number of labelled

examples in a training set whose size is fixed to be 500. We can

observe from the figures that firstly, if we compare the results

vertically in each figure, we can see how the unlabelled data

help improve the result in the proposed methods. For example

in Figure 7(e), most compared methods have a relative error

distance of around 80% when using 50 labelled examples. In

contrast, the proposed methods have an error of around 40%

by employing additional 450 unlabelled examples. Secondly,

if we compare the results horizontally in each figure, we can

find how our methods reduce calibration effort. For example

in Figure 7(a), most compared methods have a relative error

distance of around 60% when all 500 examples are labelled.

The “Co-Localization with AP” has similar performance

when using only 50 labelled and 450 unlabelled examples.

Hence, we save the calibration effort dramatically.

We can find that the mobility of the mobile device and

the environment complexity are two main factors that affected

the performance of the two-phase co-localization algorithm.
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(c) WSN MD (mobile sensor node)
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(d) WSN AP (static sensor nodes)
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(e) WLAN MD (notebook)
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Fig. 7. Experimental results over 10 repetitions (Mean and Std.): MD for mobile device; AP for access point.

In a static and plane-shaped test-bed (Figure 7(a)), the radio

signals are less noisy and the “Co-Localization no AP”

configuration demonstrated similar performance as RADAR,

LANDMARC and SVR when the number of labelled examples

is small. In a mobile and complex environment, as shown in

(Figure 7(e)), the radio signal is more noisy and the “Co-
Localization no AP” performed much better and more robust

than the compared methods. We have also tried some other

combinations of experiments that led to a similar conclusion,

such as using RFIDs in a mobile scenario.

While comparing the results of “Co-Localization no AP”

and “Co-Localization with AP” in Figures 7(a), 7(c) and 7(e),

we can find that knowing the locations of access points is

more helpful for localizing the mobile devices in a static and

planar scenario (Figure 7(a)) than in a mobile and complex

environment (see Figure 7(e)). Similarly, we can see from

Figures 7(b), 7(d) and 7(f) that knowing the locations of

mobile devices are more helpful for localizing access points

in a static and plane-shaped scenario rather than a mobile and

complex environment.
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Fig. 8. Parameter Tuning on a Validation Set.

6.1.3 Parameter Sensitivity Test
In this section, we study the parameter sensitivity on the

performance of the two-phase co-localization algorithm. Fig-

ure 8 shows the sensitivity of relative error distances while

varying parameters such as the k for retrieving top nearest

neighbors in Figure 8(a) and the regularization parameters

γ for penalizing the smoothness along the data manifold

in Figure 8(b) on a validation set. As can be seen from

Figure 8(a), the error ranges in [98.5%, 99.4%] (less than

1% change) when k varies from 5 to 20. This observation is

consistent with most manifold-based learning methods when

k is generally picked up among popular values such as 5,

10 or 15. Besides the parameter k, there are several γ’s for

controlling the smoothness on data manifolds, γA, γB , γC and

γ. As we described in Section 6.1.1, γ is a global tuning term

for γA, γB and γC in Equation (8). For tuning these parameters

in a validation set, we first fix γB to 1 and tune the others. The

tuning strategy may not be optimal but it works well in our

experiments. Figure 8(b) shows how the error changes when

the global parameter γ ranges in [10−6 10−2] while fixing

γB = 1, γA = 0.01 and γC = 0.001. The best value can be

picked up in about [10−4 10−3]. Small changes in parameter

setting such as k and γ would not change the trend of the

curves shown in Figure 7.

6.2 Speed Test of Online Co-Localization
Figure 9 shows the average running time for adding a new

training example. The test is done in Matlab on a computer

with a 2.0GHz CPU. Experimental results show that we

can greatly reduce the time for the model adaption in an

online manner. For example, when the training dataset size

is incrementally enlarged to about 500, the two-phase method

needs 1.2s to re-estimate everything while the online method

spends no more than 0.1s. The online method is more than

ten times faster. The localization accuracy of the online model

is similar to the two-phase counterpart. The difference is

that the neighborhood graph and weight matrix are revised

incrementally rather than rebuilt.

6.3 Encode a Motion Model
In this experiment, we aim to verify that, by employing a

Kalman Filter, the error distances of all previous compared

methods can be further reduced by 5% to 10% in a mobile
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Fig. 9. Average running time comparison.
scenario. Here, we perform an additional three-dimensional

tracking experiment, showing the usefulness of encoding mo-

tion models. The whole test-bed fills up a cubic space of

6.0m×6.0m×2.0m. In the test-bed, we have ten static nodes

that send out beacon signals. Five of them are deployed on the

floor and the rest on the ceiling. There is one more node that

moves freely around the environment for tracking experiments.

The ground truth location of the mobile node is exported from

four cameras deployed in the laboratory. In Figure 10(a), the

location of the mobile node is obtained by computing the

intersection point E of lines CD and AB estimated from

two different cameras. We collect 1,000 examples, which are

split into two parts: 500 examples for training and the rest

for testing. Again we vary the number of labelled examples

and repeat the experiments 10 times. The experimental result

is shown in Figure 10(b). As can be seen, the error distance

of co-localization with a motion model is about 10% smaller

than that without a motion model when sufficient labelled data

are available.
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(a) WSN 3D test-bed
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Fig. 10. Experiments with a motion model.

6.4 Encode an Action Model

In Section 4.4, we have already demonstrated how LARM
works in previous examples shown in Figure 6. In this section,

we conduct experiments to study whether the LARM algorithm

can further boost the performance of location tracking by

fusing different types of sensors. For this purpose, we use

an Android G1 phone for collecting data because it has a lot

of built-in sensors such as accelerometer, magnetic sensors,

WiFi, etc.

With a built-in 3-axis accelerometer sensor, system-detected

orientation and direction can be directly read from a built-in

compass sensor, and speed values can be indirectly estimated

from the accelerometer sensors. Specifically, we applied the

estimation method introduced in [34] to infer the speed from

accelerometer readings. Since speed and direction values are

taken as additional input, in our experiments, we did not

explicitly vart the accuracy of speed/direction values. Instead,

we focused on studying how the LARM algorithm can improve

the localization accuracy by embedding an action model even

when the speed and direction values contain noise.
The values (unit: m/s2) are in the format of (X, Y, Z).

The X axis refers to the screen’s horizontal axis (the small

edge in portrait mode, the long edge in landscape mode) and

points to the right. The Y axis refers to the screen’s vertical

axis and points towards the top of the screen. The Z axis

points toward the sky when the device is lying on its back

on a table. Figure 11(a) shows the directions of X, Y and

Z when the phone works in portrait mode. Accelerometer

sensor can be used as a pedometer for speed estimation.

Orientation is estimated from a built-in compass sensor. It is

represented by a triple (Azimuth, P itch,Roll). All values are

angles in degree. Azimuth is the rotation around the Z axis

(0◦ ≤ azimuth < 360◦), for which 0◦ = North, 90◦ = East,

180◦ = South, 270◦ = West as shown in Figure 11(a). Pitch
is the rotation around X axis (−180 ≤ pitch ≤ 180), with

positive values when the Z-axis moves toward the Y-axis. Roll
is the rotation around Y axis (−90≤roll≤90), with positive

values when the Z-axis moves toward the X-axis.
Alignment among sensors are necessary during data col-

lection because they have different sample rates. The rate

of sampling WiFi signal strength is 2Hz. Accelerometer and

orientation sensors have a sample rate 45Hz and thus will

be downsampled after action recognition naturally. In the

area shown in Figure 6(a), we walk around and collect 1000

examples at sample rate 2Hz.

6.4.1 Overall Results
In each experiment, we randomly picked a small portion

of data for labelling while the rest for testing. The results

(mean error and standard deviation) shown in Figure 11(b)

are averaged over 10 repetitions. The horizontal axis is the

percentage of data that are labelled, which ranges from 0% to

10%. The vertical axis is the average error distance in meters.

As can be seen, Dead Reckoning Localization without using

any labelled data has a large error due to drifting factor. When

we combine WiFi tracking through co-localization and Dead

Reckoning Localization together using unsupervised LARM,

the error is reduced at least by half. If some small percent of

labelled data are available, the location estimation error of the

semi-supervised LARM algorithm can be reduced significantly.

The fusion of WiFi and motion sensors with LARM also has

better performance than using partially labelled WiFi data

alone (denoted “Co-Localization without an Action Model”).
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Fig. 11. Experiments with an action model.
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6.4.2 Parameter Sensitivity Test
Compared to the two-phase co-localization algorithm, the

action-model-embedded algorithm LARM has three more pa-

rameters α, β and ε. In experiments shown in the previous

section, we use the same parameter settings for γA, γB , γC , γ
and k as described in Section 6.1.3, and set α=0.5, β=0.001
and ε = 10−6 in Equation (16), which are all tuned in a

validation set. In this section, we fix the values of γA, γB ,

γC , γ and k to test the sensitivity at different values of α, β
and ε on the overall performance of LARM. Figure 12 shows

how the error distance changes while looping through α, β and

ε. As can be seen in Figure 12(a), LARM performs well when α
ranges in [10−1 101]. Similarly, Figure 12(b) suggests that the

best value for β falls in the range [10−4 10−2]. Figure 12(c)

shows that the performance of LARM is good and vary little

when ε is set to a value smaller than 10−4.
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Fig. 12. Parameter sensitivity study with an action model.

7 CONCLUSION AND FUTURE WORKS

In this paper, we proposed a novel semi-supervised graph

Laplacian approach to solve the problem of simultaneously

recovering the locations of both mobile devices and access

points. In our co-localization framework, we estimated the

relative locations of mobile devices and access points by

exploiting a SVD based method, and estimated the absolute

locations using a small collection of labelled data through

graph Laplacian methods. Our extensive experiments in three

different test-beds showed that we can achieve high perfor-

mance with much less calibration effort as compared to several

previous approaches. Meanwhile, our model can deal with data

stream and adjust itself online relatively faster while compared

to its two-phase counterpart. Finally, we extend our framework

for multiple sensor fusion via an Action Respecting Manifold.

Several demonstrations and experimental results show that the

performance of combing multiple sensors for localization is

much better than using them individually.

The significance of the work is that we can leverage the

knowledge of the access point locations, the mobile device

trajectories and motion sensors to obtain more accurate lo-

calization. We will continue to evaluate the performance in a

large-scale and dynamic environment, e.g., in a city level and

at different time periods. We may also vary more parameters

such as the number of access points and their deployment

density and study the robustness of our proposed algorithm.

AcknowledgementWe thank Seth Teller, Rong Pan, Vincent

Wenchen Zheng for their helpful discussions and ideas during

the long run of this work in the past years. We also thank

the support of Hong Kong RGC/NSFC N HKUST624/09 and

Hong Kong RGC grant 621010, and Microsoft Research Asia

Grant MRA10EG01.

REFERENCES

[1] L. Liao, D. J. Patterson, D. Fox, and H. A. Kautz, “Learning and
inferring transportation routines,” Artificial Intelligence, vol. 171, no.
5-6, pp. 311–331, 2007.

[2] Y. Zheng and X. Xie, “Learning travel recommendations from user-
generated gps traces,” ACM Trans. Intell. Syst. Technol., vol. 2, pp. 2:1–
2:29, January 2011.

[3] K. Farrahi and D. Gatica-Perez, “Discovering routines from large-scale
human locations using probabilistic topic models,” ACM Trans. Intell.
Syst. Technol., vol. 2, pp. 3:1–3:27, January 2011.

[4] M. A. Batalin, G. S. Sukhatme, and M. Hattig, “Mobile robot navigation
using a sensor network,” in IEEE International Conference on Robotics
and Automation. IEEE, April 2004, pp. 636–642.

[5] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA: MIT Press, September 2005.

[6] A. Kotanen, M. Hannikainen, H. Leppakoski, and T. D. Hamalainen,
“Positioning with IEEE 802.11b wireless LAN,” in Proceedings of the
14th IEEE Proceedings on Indoor and Mobile Radio Communications.
IEEE, September 2003, pp. 2218–2222.

[7] Q. Yang, S. J. Pan, and V. W. Zheng, “Estimating location using Wi-Fi,”
IEEE Intelligent Systems, vol. 23, no. 1, pp. 8–13, 2008.

[8] D. Maligan, E. Elnahrawy, R. Martin, W. Ju, P. Krishnan, and A. S.
Krishnakumar, “Bayesian indoor positioning systems,” in Proceedings of
the 24th IEEE International Conference on Computer Communications,
Joint Conference of the IEEE Computer and Communications Societies.
IEEE, March 2005, pp. 1217–1227.

[9] P. Bahl and V. Padmanabhan, “RADAR: An in-building RF-based user
location and tracking system,” in Proceedings of the 19th IEEE Interna-
tional Conference on Computer Communications, Joint Conference of
the IEEE Computer and Communications Societies, vol. 2, March 2000,
pp. 775–784.

[10] B. Ferris, D. Hahnel, and D. Fox, “Gaussian processes for signal
strength-based location estimation,” in Proceedings of Robotics: Science
and Systems. MIT Press, August 2006.

[11] X. Nguyen, M. I. Jordan, and B. Sinopoli, “A kernel-based learning
approach to ad hoc sensor network localization,” ACM Transactions on
Sensor Networks, vol. 1, no. 1, pp. 134–152, 2005.

[12] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman, “Indexing by latent semantic analysis,” Journal of the
American Society of Information Science, vol. 41, no. 6, pp. 391–407,
1990.

[13] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural Computation, vol. 15, no. 6,
pp. 1373–1396, 2003.

[14] J. Ham, D. Lee, and L. Saul, “Semisupervised alignment of manifolds,”
in Proceedings of the 10th International Workshop on Artificial Intelli-
gence and Statistics. Society for Artificial Intelligence and Statistics,
January 2005, pp. 120–127.

[15] J. J. Pan and Q. Yang, “Co-localization from labeled and unlabeled data
using graph laplacian,” in Proceedings of the 20th International Joint
Conference on Artificial Intelligence. Morgan Kaufmann Publishers,
2007, pp. 2166–2171.

[16] M. H. C. Law and A. K. Jain, “Incremental nonlinear dimensionality
reduction by manifold learning,” IEEE Transaction on Pattern Analysis
and Machine Intelligence, vol. 28, no. 3, pp. 377–391, 2006.

[17] O. Kouropteva, O. Okun, and M. Pietikainen, “Incremental locally linear
embedding algorithm,” Pattern Recognition, vol. 38, no. 10, pp. 1764–
1767, October 2005.

[18] J. J. Pan, Q. Yang, and S. J. Pan, “Online co-localization in indoor
wireless networks by dimension reduction,” in Proceedings of the 22nd
National Conference on Artificial Intelligence. AAAI Press, 2007, pp.
1102–1107.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



14

[19] B. Ferris, D. Fox, and N. Lawrence, “WiFi-SLAM using gaussian
process latent variable models,” in Proceedings of the 20th International
Joint Conference on Artificial Intelligence. Hyderabad, India: Morgan
Kaufmann Publishers Inc., 2007, pp. 2480–2485.

[20] T. Yairi, “Map building without localization by dimensionality reduction
techniques,” in Proceedings of the 24th international conference on
Machine learning. ACM Press, 2007, pp. 1071–1078.

[21] E. Foxlin, “Pedestrian tracking with shoe-mounted inertial sensors,”
IEEE Computer Graphics and Applications, vol. 25, no. 6, pp. 38–46,
2005.

[22] M. Bowling, A. Ghodsi, and D. Wilkinson, “Action respecting embed-
ding,” in Proceedings of the 22nd International Conference on Machine
Learning. ACM Press, 2005, pp. 65–72.

[23] J. Letchner, D. Fox, and A. LaMarca, “Large-scale localization from
wireless signal strength,” in Proceedings of the 20th National Conference
on Artificial Intelligence. AAAI Press / MIT Press, July 2005, pp. 15–
20.

[24] M. Youssef, A. Agrawala, and U. Shankar, “WLAN location determi-
nation via clustering and probability distributions,” in Proceedings of
the First IEEE International Conference on Pervasive Computing and
Communications. IEEE, March 2003, pp. 143–150.

[25] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–
1359, October 2010.

[26] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis.
New York, NY, USA: Cambridge University Press, 2004.

[27] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A
geometric framework for learning from labeled and unlabeled exam-
ples,” Journal of Machine Learning Research, vol. 7, pp. 2399–2434,
November 2006.

[28] J. J. Pan, Q. Yang, H. Chang, and D. Y. Yeung, “A manifold regu-
larization approach to calibration reduction for sensor-network based
tracking,” in Proceedings of the Twenty-First National Conference on
Artificial Intelligence. AAAI Press, July 2006, pp. 988–993.

[29] F. Chung, Spectral Graph Theory. American Mathematical Society,
1997.

[30] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 8, pp. 888–905, 2000.

[31] I. S. Dhillon, “Co-clustering documents and words using bipartite spec-
tral graph partitioning,” in Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM Press, 2001, pp. 269–274.

[32] B. Hendrickson, “Latent semantic analysis and fiedler embeddings,” in
Proceedings of SIAM Workshop on Text Mining. SIAM, April 2006.

[33] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning
using gaussian fields and harmonic functions,” in Proceedings of the
Twentieth International Conference on Machine Learning. ACM Press,
August 2003, pp. 912–919.

[34] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, “Activity recog-
nition from accelerometer data,” in Proceedings of the 7th Innovative
Applications of Artificial Intelligence Conference. AAAI Press, 2005,
pp. 1541–1546.

[35] E. O. Brigham and R. E. Morrow, “The fast fourier transform,” IEEE
Spectrum, vol. 4, pp. 63–70, 1967.

[36] J. A. Ward, P. Lukowicz, and H. W. Gellersen, “Performance metrics
for activity recognition,” ACM Trans. Intell. Syst. Technol., vol. 2, pp.
6:1–6:23, January 2011.

[37] L. Ni, Y. Liu, Y. Lau, and A. Patil, “LANDMARC: Indoor location
sensing using active RFID,” in Proceedings of the First IEEE Interna-
tional Conference on Pervasive Computing and Communications. IEEE,
March 2003, pp. 407–416.

Jeffrey Junfeng Pan received the Ph.D. degree
in Computer Science from the Hong Kong Uni-
versity of Science and Technology in 2008, and
the B.S. degree in Computer Science from Sun
Yat-sen University in China in 2003. He is cur-
rently a research scientist in Facebook Inc., Palo
Alto, CA. He was a research engineer in Google
Inc., Mountain View, CA from 2007 to 2010. His
main research interests include machine learn-
ing, data mining and their applications in ads
optimization and mobile computing.

Sinno Jialin Pan received the Ph.D. degree
in computer science and engineering from the
Hong Kong University of Science and Technol-
ogy in 2010, and the B.S. and M.S. degrees
in applied mathematics from Sun Yat-sen Uni-
versity in China in 2003 and 2005, respectively.
He is currently a research fellow at the Institute
for Infocomm Research, Singapore. His main re-
search interests include transfer learning, semi-
supervised learning and theirs applications in
pervasive computing and information extraction.

Jie Yin received the PhD degree in Computer
Science from the Hong Kong University of Sci-
ence and Technology in 2006, and the BE de-
gree from Xi’an Jiaotong University, China, in
2001. She is currently a research scientist in the
Information Engineering Laboratory at CSIRO
ICT Centre, Australia. Her research interests
include data mining, machine learning and their
applications to sensor-based activity recogni-
tion, social network analysis and Web mining.

Lionel M. Ni received the Ph.D. degree in elec-
trical and computer engineering from Purdue
University, West Lafayette, IN, in 1980. He is
Chair Professor in the Computer Science and
Engineering Department at HKUST. He served
as the Department Head from 2002 to 2008. He
also serves as the Special Assistant to the Pres-
ident at HKUST, Dean of HKUST Fok Ying Tung
Graduate School, and Director of HKUST China
Ministry of Education/Microsoft Research Asia
IT Key Lab. He was the Chief Scientist of the

National Basic Research Program of China (973 Program) on Wireless
Sensor Networks. He has chaired many professional conferences and
has received a number of awards for authoring outstanding papers. He
is a fellow of IEEE.

Qiang Yang is a professor in the Department
of Computer Science and Engineering, Hong
Kong University of Science and Technology and
an IEEE Fellow. His research interests are data
mining and artificial intelligence. He received
his Ph.D. degree in Computer Science from the
University of Maryland, College Park and B.S.
degree from Peking University in Astrophysics.
He was elected as a vice chair of ACM SIGART
in July 2010. He is the founding Editor in Chief
of the ACM Transactions on Intelligent Systems

and Technology (ACM TIST). He was a PC co-chair or general co-chair
for a number of international conferences, including ACM KDD’10, ACM
IUI’10, etc.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.


